A Note on Nonconvex Minimax Theorem with Separable Homogeneous Polynomials

نویسنده

  • G. Y. Li
چکیده

The minimax theorem for a convex-concave bifunction is a fundamental theorem in optimization and convex analysis, and has a lot of applications in economics. In the last two decades, a nonconvex extension of this minimax theorem has been well studied under various generalized convexity assumptions. In this note, by exploiting the hidden convexity (joint range convexity) of separable homogeneous polynomials, we establish a nonconvex minimax theorem involving separable homogeneous polynomials. Our result complements the existing study of nonconvex minimax theorem by obtaining easily verifiable conditions for the nonconvex minimax theorem to hold.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Minimax Theorems On Nonconvex Domains∗

In this paper, the author considers generalized minimax theorems for vector set-valued mappings using Fan-KKM theorem on nonconvex domains of Hausdorff topological vector spaces.

متن کامل

A Note on Mild Solutions for Nonconvex Fractional Semilinear Differential Inclusions∗

We consider a Cauchy problem for a fractional semilinear differential inclusions involving Caputo’s fractional derivative in non separable Banach spaces under Filippov type assumptions and we prove the existence of solutions. MSC: 34A60, 26A33, 34B15 keywords: fractional derivative, fractional semilinear differential inclusion, Lusin measurable multifunctions.

متن کامل

Homogeneous Polynomials with Isomorphic Milnor Algebras

In this note we recall first Mather’s Lemma 2.4 providing effective necessary and sufficient conditions for a connected submanifold to be contained in an orbit. In Theorem 3.2 we show that two homogeneous polynomials f and g having isomorphic Milnor algebras are right-equivalent. This is similar to the celebrated theorem by Mather and Yau [4], saying that the isolated hypersurface singularities...

متن کامل

Numerical integration of homogeneous functions on convex and nonconvex polygons and polyhedra

We present a method for the numerical integration of homogeneous functions over convex and nonconvex polygons and polyhedra. On applying Stokes’s theorem and using the property of homogeneous functions, we show that it suffices to integrate these functions on the boundary facets of the polytope. For homogeneous polynomials, this approach is used to further reduce the integration to just functio...

متن کامل

Unified approach to some geometric results in variational analysis

Based on a study of a minimization problem, we present the following results applicable to possibly nonconvex sets in a Banach space: an approximate projection result, an extended extremal principle, a nonconvex separation theorem, a generalized Bishop-Phelps theorem and a separable point result. The classical result of Dieudonné (on separation of two convex sets in a finite dimensional space) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Optimization Theory and Applications

دوره 150  شماره 

صفحات  -

تاریخ انتشار 2011